• Login
    • Join
  • FOLLOW:
  • Subscribe Free
    • Magazine
    • eNewsletter
    Checkout
    • Magazine
    • News
    • Manufacturing
    • Packaging
    • Development
    • Compliance
    • Top 25
    • Directory
    • Microsites
    • Events
    • More
  • Magazine
  • News
  • Manufacturing
  • Packaging
  • Development
  • Compliance
  • Top 25
  • Directory
  • Microsites
  • Events
  • Current / Back Issue
    Features
    Editorial
    Columns
    Digital Edition
    eNewsletter Archive
    Our Team
    Editorial Guidelines
    Subscribe Now
    Advertise Now
    Top Features
    Pharmaceutical Packaging Technology

    Elemental Impurities: The Time Has Come

    Continuous vs. Batch Production

    2018: The evolution of pharmaceutical packaging

    Formulation Development Trends
    Breaking News
    Online Exclusives
    Industry News
    Collaborations & Alliances
    Promotions & Moves
    Trials & Filings
    Financial Reports
    Bio News & Views
    Custom Sourcing News
    Packaging & Tracking
    CRO News
    Live From Shows
    Top News
    Thermo Fisher Invests $50M to Grow Biologics Footprint

    Q Therapeutics, REPROCELL Form MAGiQ Therapeutics

    Synpromics, Lonza Enter Partnership

    Noramco, SPI Pharma Sign Agreement

    Codexis, Porton Enter Collaboration
    APIs
    Aseptic Processing
    Cleaning Validation
    Clinical Trial Materials
    Cytotoxics and High Potency Manufacturing
    Equipment
    Excipients
    Extractables and Leachables
    Facilities
    Fill/Finish
    Lyophilization
    Parenterals
    Process Development
    Process Validation
    Risk Management
    Scale-up/ Technology Transfer
    Solid Dosage/ Creams/ Ointments

    Thermo Fisher Invests $50M to Grow Biologics Footprint

    Codexis, Porton Enter Collaboration

    WuXi AppTec Opens Laboratory Testing Facility in NJ

    Arcinova Receives £1.5M Innovate UK Grant

    Vetter Welcomes Illinois Governor
    Capsules
    Cold Chain Management
    Injectables
    Logistics
    Serialization
    Solid Dosage / Semi-solids
    Supply Chain
    Vials

    INTERPHEX: Adents Showcases Cloud-Based Serialization Solution

    Almac Group Expands Packaging Capabilities

    Catalent Bolsters Clinical Supply Capabilities

    West, Stevanato Group Enter Ompi EZ-fill Alliance

    Pharmaceutical Packaging Technology
    Analytical Services
    Bioanalytical Services
    Bioassay Developement
    Biologics, Proteins, Vaccines
    Biosimilars
    Chemistry
    Clinical Trials
    Drug Delivery
    Drug Development
    Drug Discovery
    Formulation Development
    Information Technology
    Laboratory Testing
    Methods Development
    Microbiology
    Preclinical Outsourcing
    R&D
    Toxicology

    Q Therapeutics, REPROCELL Form MAGiQ Therapeutics

    Noramco, SPI Pharma Sign Agreement

    Codexis, Porton Enter Collaboration

    AMRI Expands NMR Spec Capabilities in Europe

    WuXi AppTec Opens Laboratory Testing Facility in NJ
    Filtration & Purification
    GMPs/GCPs
    Inspections
    QA/QC
    Regulatory Affairs
    Validation

    Blockchain: The Next Big Trend in BioPharma?

    Emergent Completes Market Authorization

    Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle: ICH Q12

    LSNE Expands Capabilities and QC Laboratory Space

    Evotec Launches Drug Development Service
    Companies
    Categories
    Corporate Capabilities
    Add New Company
    Contract Service Directory Companies
    Piramal Pharma Solutions

    Alcami

    Almac Group

    Rockledge Pharmaceutical Manufacturing, LLC

    Exelead
    Companies
    News Releases
    Posters
    Brochures
    Services
    Videos
    Case Study
    White Papers
    Jobs
    Contract Service Directory Companies
    Alcami
    Webinars
    Live From Shows
    • Magazine
      • Current / Back Issue
      • Features
      • Editorial
      • Columns
      • Editorial Guidelines
      • Subscribe Now
      • Advertise Now
      • Enewsletter Archive
      • Digital Edition
    • Directory
      • Companies
      • Categories
      • Corporate Capabilities
      • Add Your Company
    • Manufacturing
      • APIs
      • Aseptic Processing
      • Cleaning Validation
      • Clinical Trial Materials
      • Cytotoxics and High Potency Manufacturing
      • Equipment
      • Excipients
      • Extractables and Leachables
      • Facilities
      • Fill/Finish
      • Lyophilization
      • Parenterals
      • Process Development
      • Process Validation
      • Risk Management
      • Scale-up/ Technology Transfer
      • Solid Dosage/ Creams/ Ointments
      • cGMP Manufacture
    • Packaging
      • Capsules
      • Cold Chain Management
      • Injectables
      • Logistics
      • Serialization
      • Solid Dosage / Semi-solids
      • Supply Chain
      • Vials
    • Development
      • Analytical Services
      • Bioanalytical Services
      • Bioassay Developement
      • Biologics, Proteins, Vaccines
      • Biosimilars
      • Chemistry
      • Clinical Trials
      • Drug Delivery
      • Drug Development
      • Drug Discovery
      • Formulation Development
      • Information Technology
      • Laboratory Testing
      • Methods Development
      • Microbiology
      • Preclinical Outsourcing
      • R&D
      • Toxicology
    • Compliance
      • Filtration & Purification
      • GMPs/GCPs
      • Inspections
      • QA/QC
      • Regulatory Affairs
      • Validation
    • Top 25 Pharma & BioPharma
      • Top 20 Pharma & BioPharma
      • Top 10 BioPharma Companies
    • Breaking News
    • Online Exclusives
    • Slideshows
    • Experts Opinions
    • Surveys
      • Outsourcing Survey
      • Salary Survey
    • Glossary
    • Videos
    • White Papers
    • Infographics
    • Supplier Microsite
      • Companies
      • News Releases
      • Posters
      • Brochures
      • Services
      • Videos
      • Case Study
      • White Papers
    • Contract Pharma Conference
      • Contract Pharma Conference
      • Speakers
      • Exhibitors
      • Agenda
      • Conference Sessions
    • Events
      • Industry Events
      • Live from Show Events
      • Webinars
    • Classifieds / Job Bank
      • Classifieds
      • Job Bank
    • About Us
      • About Us
      • Contact Us
      • Advertise With Us
      • Privacy Policy
      • Terms of Use
    Features

    Know Your Drug: A Solution to Dissolution

    Examining key strategies for solubility and dissolution assessment of new drug products, drug product intermediates and APIs

    Figure 1. Oral route flowchart (adapted from Fotaki, et al, 2010, The open drug delivery journal)2
    Figure 1. Oral route flowchart (adapted from Fotaki, et al, 2010, The open drug delivery journal)2
    Table 1. Typical values of Mean Residence Times (MRT) in various segments of the GI Tract of Young Healthy Volunteers (J. Dressman & J. Krämer, 2005)3
    Table 1. Typical values of Mean Residence Times (MRT) in various segments of the GI Tract of Young Healthy Volunteers (J. Dressman & J. Krämer, 2005)3
    Luís Sousa, Mafalda Paiva and Pedro Serôdio, Hovione03.07.17
    In recent years, the number of poorly soluble drugs coming out of the drug discovery laboratories has increased significantly and these already constitute nearly 90% of all molecules in the discovery pipeline. Approximately 70% of these drugs are BCS/DCS class II that have good permeability properties but exhibit poor water solubility.1

    To overcome the solubility issues of these new molecular entities, a number of strategies have been used to yield drug formulations with an increased solubility or biological exposure. One such strategy consists of generating amorphous solid dispersions (ASD) by different techniques such as spray drying, spray congealing, jet milling, wet polishing and hot melt extrusion, amongst the most important.

    Because solubility is the key parameter driving the formulation work on amorphous solid dispersions, it is very important to have a comprehensive knowledge on dissolution of dosage forms and testing. In this sense, the following sections will describe and clarify the different aspects related to API/dosage form solubility, biorelevant dissolution testing and QC testing for final product release.

    Attributes that influence dissolution
    The dissolution performance of drugs and drug products is influenced by several active pharmaceutical ingredient (API) molecular and physical attributes as well as dosage form properties. Some of the most important API molecular properties are the molecular weight, melting temperature, pKa, partition coefficient and solubility, which, ultimately, depends on all other properties. With respect to API physical properties, the particle size distribution, solid-state properties (crystallinity vs. amorphicity) and surface characteristics like wettability are well known to influence the dissolution profile of drugs and drug formulations. Dosage form properties such as the formulation type (tablet, capsule, etc.), the release mechanism, type and ratio of excipients used and the manufacturing variables should also be considered.

    Another very important parameter that depends on both the solubility and the solid-state properties of the API, is the potential for drugs to generate supersaturated solutions. This property should be taken in consideration when developing high-energy solid dosage forms such as salts, co-crystals or amorphous solid dispersions because there are specific thermodynamic and kinetic aspects that influence the dissolution behavior of these solid forms.

    Supersaturation
    Supersaturated solutions are highly concentrated solutions of drug where the apparent solubility (kinetic solubility) is above the thermodynamic equilibrium solubility achieved by dissolving the stable crystalline drug. This state is metastable, in the sense that there is no thermodynamic equilibrium and there is an inherent tendency for the drug to crystallize from solution. As previously mentioned, supersaturated solutions can be generated by dissolution of high-energy solids, such as salts, co-crystals or amorphous solid dispersions. Two other strategies can be used to generate supersaturated solutions: a solvent-shift method, that consists of dissolving the drug in a water-miscible solvent in which it has high solubility and dispersing a small aliquot of this solution into aqueous phase to generate a supersaturated system; and a pH-shift method, where the solution pH is changed so rapidly from the high to the low solubility end, that equilibrium is not reached and, therefore, supersaturation is generated.

    The phenomenon of supersaturation is still not completely understood and there has always been a substantial knowledge gap in terms of understanding the extent and duration of supersaturation generated by solubility enhancing formulations. Recently, it has been suggested that the maximum theoretical supersaturation is given by the amorphous solubility.2
    This correlation has been demonstrated by comparing the theoretical amorphous solubility of drugs with the concentration at which a phenomenon called Liquid-Liquid Phase Separation (LLPS) occurs. This phenomenon occurs at highly supersaturated solutions and the new phase that forms is a sub-micron (colloidal) drug-rich phase with no evidence of crystalline structure. It is therefore suggested that the maximum concentration of drug allowed in solution is governed by the solubility of the amorphous drug. After reaching that concentration, drug precipitates either as a liquid-like phase or a glassy amorphous precipitate.

    In theory, determination of the maximum extend of supersaturation is simple; it just requires determination of LLPS concentration. In practice, it is extremely difficult to do that because many drug molecules have a great tendency to crystallize at such high drug concentrations and LLPS concentrations may never be reached as a consequence of fast crystallization kinetics. Polymers are well known to inhibit crystallization and can be used to delay the onset of crystallization thus allowing LLPS to occur at high concentrations.

    Supersaturation in formulation development
    Supersaturation studies can be very useful when developing a dissolution method because they allow establishing the maximum concentration of drug in solution that can be achieved from dissolution of the dosage form. Knowledge on the LLPS concentration and amorphous solubility is very important to define the upper limit of drug concentration in solution.

    Supersaturation studies are also typically used in polymer screening methodologies for amorphous solid dispersion development. Upon establishing the target supersaturation level, the effect of polymers to inhibit crystallization from solution can be studied and those that prove more efficient in preventing crystallization are considered for the selection of the final formulation.

    At Hovione, these supersaturation studies are an important part of a three-stage methodology that involves an initial computational screening stage followed by the physical stability evaluation of solid dispersions by DSC.

    Biorelevant dissolution
    It is important to acknowledge the journey an immediate release (IR) drug takes before reaching the site of absorption. Initially, it will disintegrate into granules, followed by small particle formation—all these forms will begin to dissolve leading to an increased concentration of drug in solution. This will happen both in the stomach, at low pH and also in the upper intestine at high pHs. The free drug substance in solution is now available for absorption. In this way, there are three phenomena controlling the oral absorption of IR drugs: solubility, dissolution and permeation (see Figure 1).

    The ability of developing a dissolution-based strategy that allows both the analytical and the formulation scientists to better understand the under-development drug product is of utter importance. As an ultimate goal, the biorelevant dissolution method will allow a decrease in animal studies and also a successful Phase I clinical trial. The biorelevant dissolution method should occur at a pre-clinical phase, during early product development. It separates itself from the traditional pharmacopeial methods, since a 100% API release is not the main goal: either the effective drug substance concentration detection throughout time. For this reason, employing sink conditions should be considered, where three to ten times the volume required for drug substance saturation is used, surpassing the effect of reaching drug saturation. The application of a biorelevant dissolution method should enable the detection of precipitation issues throughout the GI tract, guide in the definition of the most suitable time of drug intake by knowing the effect of food in the solubilization of the drug and also discriminate differences in the manufacturing procedure.

    Biorelevant method development
    It is important to define the adequate duration for dissolution method, so that it resembles the residence time of the oral drug product in the GI tract. These times, according to Table 1, vary according to a fast or fed situation, and are correspondent to mean residence times, since this is patient dependent.

    Accounting for the solubilization effects of bile salts and enzymes should also occur. The use of dissolution media that mimics the presence of these compounds will help understanding the effective drug concentration and enable a correlation with in vivo data. Media like FaSSIF or FeSSIF, corresponding to empty and post-prandial conditions, respectively, allows the analysis of the solubilization effects of bile salts by the presence of sodium taurocholate and enzyme effects by the presence of lecitine and pancreatine.

    Compendial dissolution
    During development stage, the dissolution method tends to progress depending on its intended purpose/applicability and should be re-assessed when human bioavailability data become available from the clinical formulations.

    As a regulatory requirement for dosage forms, dissolution methods should be routinely used for quality control (QC) purposes assisting product release, stability, and ensuring the comparability and consistency between batches. In that sense, with the accumulation of experience, the early biorelevant method should be critically re-evaluated and potentially simplified, giving preference to compendial apparatus. The biorelevant method may not always be practicable, and may or may not be the same as the QC method due to its scope and constraints.

    In opposition to common biorelevant dissolution, QC methods require sink conditions and the full release of the drug. Typically, dissolution medium for QC does not apply simulated fasted or fed state gastric/intestinal fluids but, instead, it uses conventional buffers (e.g. acetate, phosphate) for real-world applications. The QC method should be simple, user-friendly, robust and suitable for validation purposes exhibiting low variability and good profile shape. Conditions that are optimal for QC purposes may not be applicable to predict in vivo performance so it may be necessary to use two dissolution tests to meet different objectives such as development needs or regulatory demands.5

    The development of a dissolution QC method can be initially supported by the dissolution data in different pHs values previously obtained in biorelevant media and at the end there should be an attempt to correlate the biorelevant dissolution test with the QC method in order to the capture the same discriminating trend of both methodologies for critical attributes of the dosage form.

    Discriminating ability
    The discriminating power of the QC method is an important attribute that should be challenged to ensure that the method is sensitive enough to capture formulation and manufacturing changes.

    Based on some experienced case studies of BCS Class II compounds, in-vitro biorelevant dissolution can initially help on capturing the differences in clinical performance generated for two different formulations (e.g. granules from a spray dried intermediate). That discrimination can be achieved using pH shift approaches, taking advantage from the different dissolution profiles previously obtained at separated pH values. A change from pH 1.2 to 6.8, corresponding respectively to the gastric pH (e.g. simulated gastric fluid) and intestinal pH (fasted state simulated intestinal fluid) can led to different dissolution profiles. The decay in the dissolution profile can occur at diverse rates and the differences in the two formulations are pronounced. Based on this previous knowledge, a simpler QC method can be developed applying paddle apparatus and using acidic medium at pH 1.2 with an agitation speed of 50 rpm. Effective homogenization of the suspension in the vessel should be ensured to get almost full API released in about 30 to 45 minutes. The discrimination seen with the pH shift approach needs to be captured also by the QC method which procedure should then be validated.

    The discriminative ability of QC method can be illustrated concerning a manufacturing variable, in this specific case, the compressing force during tableting process. For two tablet formulations, differing in the polymer composition of the originator spray dried intermediate, three increasing compression forces were tested. Results revealed the dissolution was slightly slower for middle and high hardness tablets.

    Even any slight differences in disintegration time can potentially slightly retard dissolution for the harder tablets. The more friable ones tend to break faster and have a faster dissolution. The compression force itself is a potential critical process parameter because of its possible effect on dissolution. Other manufacturing variables such as lubrication blend time, excipient/API addition order, drying parameters and coating parameters can also be critical to understand dissolution differences between formulations.

    The discriminating capability of QC method is also important to capture any possible changes in physical stability of tablets during storage. At six-month timepoint, an atypical decrease in dissolution profile is observed for tablets stored under accelerated conditions in a double polyethylene bag without moisture absorbers inside. When XRPD diffractograms of the originator spray dried intermediate matrix (stored at the same conditions and packaging configuration) were checked, they showed some incidences of crystallinity: API characteristic diffraction peaks are observed together with the halos attributed to the amorphous matrix.

    The slower dissolution rate of aged tablet might be related to temperature and humidity conditions used during study. The temperature and moisture during storage also influences the rate of recrystallization from amorphous. This conversion produces a change in the dissolution profile. This dissolution and XRPD behavior was not observed for the same tablet formulation stored in a more conservative packaging configuration (inside PE flasks with moisture absorbers). This example shows the importance of changing the dissolution method to anticipate stability issues and give important information to the need for protecting the drug product in manufacturing/stability perspective.

    Final remarks on QC method
    The development of QC methods should be facilitated and accelerated by the previous knowledge gained with biorelevant development. Data for different pHs, the intrinsic properties of drug product intermediate, even the type of apparatus to use and the simplification of the medium are all important features to be taken in consideration for QC method development. In any case, final QC method should be challenged using batches produced when deliberate changes in manufacturing process are applied or a design space for critical attributes are defined. Stability issues should also be anticipated and addressed with stress tests. Additional to the historical in vitro data for release and stability, clinical performance of representative batches is also important to define any last update on the method and on the final specifications.

    Conclusion
    There must be an initial stage where the API properties are well studied and the impact of these properties on solubility and dissolution are assessed. Supersaturation studies are very important in this initial stage to help establishing drug concentrations used during method development and to help selecting the best formulation during polymer screening. The next step should get to know better solubilization strategies and the effective concentration of drug substance based on the most physiologically relevant methods.

    Based on the knowledge acquired during the biorelevant screening methodologies, a faster and reliable QC method suitable for daily routine and release purposes should then be developed. 

    References
    1. Almeida e Sousa, L., Reutzel-Edens, S.M., Stephenson, G.A., Taylor, L.S., Assessment of the Amorphous “Solubility” of a Group of Diverse Drugs Using New Experimental and Theoretical Approaches, Molecular Pharmaceutics, 2015 12 (2), 484-495.
    2. Fotaki, N., Vertzoni, M., Biorelevant Dissolution Methods and Their Applications in In Vitro In Vivo Correlations for Oral Formulations; The Open Drug Delivery Journal, 2010, Volume 4.
    3. Dressman, J., Krämer, J., Pharmaceutical Dissolution Testing, 1st ed. Taylor & Francis Group, 2005.
    4. Paprskářová, A., Možná, P., Oga, E. F., Elhissi, A., Alhnan, M. A., Instrumentation of Flow-Through USP IV Dissolution Apparatus to Assess Poorly Soluble Basic Drug Products: a Technical Note, AAPS PharmSciTech, 2016, 17 (5), 1261-1266
    5. Gregory P. Marti, A Rational Approach to Development and Validation of Dissolution Methods, American Pharmaceutical Review, April, 2013.

    Luís Sousa joined Hovione in 2015, having worked in the R&D Drug Product Development group, where he has been working on analytical development. Luis holds a PhD in Thermal Analysis at the UCL School of Pharmacy, London, UK and a Post-doc at Purdue University, Department of Industrial and Physical Pharmacy, West Lafayette, USA. The postdoc research focused on different solubility enhancing strategies for poorly water soluble drugs.

    Mafalda Paiva joined Hovione in 2014 having worked in the R&D Drug Product Development group, where she has been working on analytical method development for new drug products and drug product intermediates, mainly focusing on dissolution and permeability methods. Mafalda has a MSc in Pharmaceutical Sciences and Quality Control, both from Pharmacy Faculty – University of Porto, with background in nanotechnology, pharmaceutical and analytical chemistry.

    Pedro Serôdio joined Hovione in 2006, having worked in the R&D Drug Product Development group, where he has been working on the development of new analytical methods for drug product intermediates and oral solid dosage forms. Pedro has ten years of experience in the pharmaceutical quality control focused on analytical development area with strong expertise in HPLC/GC and dissolution methods for poorly-water soluble drugs. Pedro holds a Degree in Technological Chemistry from Faculty of Sciences of University of Lisbon with background in analytical chemistry and chromatographic techniques.
    Related Searches
    • Drug Delivery
    • polymers
    • apis
    • Development

    Related Features

    • Integrated Early-Stage Drug Development and Manufacturing

      Integrated Early-Stage Drug Development and Manufacturing

      A key to accelerating the drug development process.
      Mark Egerton, Chief Executive Officer, Quotient Sciences 03.09.18

    • CEO Spotlight: Sterling Pharma Solutions

      CEO Spotlight: Sterling Pharma Solutions

      A conversation with Kevin Cook about CDMO-sponsor partnerships and outsourcing
      Tim Wright, Editor, Contract Pharma 11.07.17

    • The Challenges of Drug Development

      The Challenges of Drug Development

      As recorded in two new worthwhile books
      Michael A. Martorelli, Fairmount Partners 10.11.17


    • Making Medicines: Speeding the Path from Idea to Patient

      Making Medicines: Speeding the Path from Idea to Patient

      Speeding the path from idea to patient
      Dan Bowles and Michael Tracey, Cambrex 10.11.17

    • The Challenges in Developing Therapeutic Cannabis

      The Challenges in Developing Therapeutic Cannabis

      While holding much promise, cannabis-based drug therapies are complex and their development offers many challenges to overcom
      Dr. David Fulper, Director, Technology Support, Catalent 04.03.17

    • Formulation Strategies for  Aging Consumers

      Formulation Strategies for Aging Consumers

      Convenience, flavor and novel combinations of ingredients can help offer better product experiences.
      Stephen Tindal, Director, Science and Technology, Catalent Pharma Solutions 03.07.17


    • Precision Medicine

      Precision Medicine

      An overview of healthcare’s new wave and future hope
      Kiley R. Prilliman, TRI 03.07.17

    • Modeling & Simulation for  Drug Development & Formulation

      Modeling & Simulation for Drug Development & Formulation

      A look at how to leverage modeling and simulation technology to enhance all phases of the drug development process.
      Nathan Teuscher and Nikunjkumar Patel , Certara 03.07.17

    • CROs and Today’s  R&D Landscape

      CROs and Today’s R&D Landscape

      John Lewis of ACRO discusses opportunities, challenges, and the future CRO
      Kristin Brooks, Associate Editor, Contract Pharma 11.09.16


    • The Human Parts of Mouse Models

      The Human Parts of Mouse Models

      The PDX model system has come back into focus
      Julia Schueler, Head of in vivo Operations, Oncotest, a Charles River company 10.11.16

    • Two Strikes, Two Outs, or Time Out? Inhalation for Systemic Effect

      Two Strikes, Two Outs, or Time Out? Inhalation for Systemic Effect

      The challenges of using the lung as a portal for the treatment of systemic conditions
      Tugrul Kararli, Kurt Sedo, Josef Bossart, PHARMACIRCLE 10.11.16

    • APIs | Clinical Trial Materials
      Choosing Oral Formulations for First-in-man Clinical Trials

      Choosing Oral Formulations for First-in-man Clinical Trials

      Early formulations should be simple, but selecting a simple formulation isn’t as easy as it seems
      Jon Sutch, Senior Manager of Formulation Development, Patheon 10.11.16

    • APIs | Clinical Trial Materials
      7 Steps Virtual Pharma Companies Can Take to Improve Clinical Study Success

      7 Steps Virtual Pharma Companies Can Take to Improve Clinical Study Success

      Virtual pharmaceutical companies face special challenges
      Joe Cobb, Anshul Gupte, Metrics Contract Services 10.11.16

    • Regulatory Affairs
      FDA & Drug Development

      FDA & Drug Development

      You must perform the necessary due diligence to stay on top of regulatory developments
      Rachelle Du2019Souza, Regulatory Heights Inc. 09.08.16

    • The Role of Alliances in Modern Drug Development

      The Role of Alliances in Modern Drug Development

      Combining expertise to get drug candidates through development
      Dr. Claire Madden-Smith, Senior Vice President, Juniper Pharma Services 09.08.16

    Breaking News
    • Thermo Fisher Invests $50M to Grow Biologics Footprint
    • Q Therapeutics, REPROCELL Form MAGiQ Therapeutics
    • Synpromics, Lonza Enter Partnership
    • Noramco, SPI Pharma Sign Agreement
    • Codexis, Porton Enter Collaboration
    View Breaking News >
    CURRENT ISSUE

    April 2018

    • Pharmaceutical Packaging Technology
    • Elemental Impurities: The Time Has Come
    • Continuous vs. Batch Production
    • 2018: The evolution of pharmaceutical packaging
    • Formulation Development Trends
    • Changing Dynamics: The CDMO market in focus
    • Contract BioManufacturing in China: Creating a New Segment
    • View More >

    Copyright © 2018 Rodman Media. All rights reserved. Use of this constitutes acceptance of our privacy policy The material on this site may not be reproduced, distributed, transmitted, or otherwise used, except with the prior written permission of Rodman Media.