Explore recent issues of Contract Pharma covering key industry trends.
Read the full digital version of our magazine online.
Stay informed! Subscribe to Contract Pharma for industry news and analysis.
Get the latest updates and breaking news from the pharmaceutical and biopharmaceutical industry.
Discover the newest partnerships and collaborations within the pharma sector.
Keep track of key executive moves and promotions in the pharma and biopharma industry.
Updates on the latest clinical trials and regulatory filings.
Stay informed with the latest financial reports and updates in the pharma industry.
Expert Q&A sessions addressing crucial topics in the pharmaceutical and biopharmaceutical world.
In-depth articles and features covering critical industry developments.
Access exclusive industry insights, interviews, and in-depth analysis.
Insights and analysis from industry experts on current pharma issues.
A one-on-one video interview between our editorial teams and industry leaders.
Listen to expert discussions and interviews in pharma and biopharma.
A detailed look at the leading US players in the global pharmaceutical and BioPharmaceutical industry.
Browse companies involved in pharmaceutical manufacturing and services.
Comprehensive company profiles featuring overviews, key statistics, services, and contact details.
A comprehensive glossary of terms used in the pharmaceutical and biopharmaceutical industry.
Watch in-depth videos featuring industry insights and developments.
Download in-depth eBooks covering various aspects of the pharma industry.
Access detailed whitepapers offering analysis on industry topics.
View and download brochures from companies in the pharmaceutical sector.
Explore content sponsored by industry leaders, providing valuable insights.
Stay updated with the latest press releases from pharma and biopharma companies.
Explore top companies showcasing innovative pharma solutions.
Meet the leaders driving innovation and collaboration.
Engage with sessions and panels on pharma’s key trends.
Hear from experts shaping the pharmaceutical industry.
Join online webinars discussing critical industry topics and trends.
A comprehensive calendar of key industry events around the globe.
Live coverage and updates from major pharma and biopharma shows.
Find advertising opportunities to reach your target audience with Contract Pharma.
Review the editorial standards and guidelines for content published on our site.
Understand how Contract Pharma handles your personal data.
View the terms and conditions for using the Contract Pharma website.
What are you searching for?
Pre-Testing stops a big problem before it even starts
June 5, 2013
By: dan haines
SCHOTT pharma services
By: volker scheumann
Glass delamination has emerged as a significant problem for the pharmaceutical industry, causing the recalls of numerous injectable drug products over the past several years, at the cost of as much as $50 million per recall. The FDA has reacted to these recalls by taking a serious interest in how companies ensure their drug products are stored safely. There is no single factor that causes glass delamination in a pharmaceutical setting, and it can be a difficult problem to address because it typically doesn’t show up until the product has been stored in the container for several months. Because of the complexity of the problem and the delay before the problem appears, there is no simple fix once delamination has been observed. Nevertheless, there are concrete steps that pharma companies can take to minimize the risks of glass flakes. The key is to conduct container/drug product compatibility testing prior to commercialization. Accelerated testing of both the drug product and the candidate containers, together, can identify potential problems in as little as a few weeks, simulating the shelf life for a product under standard storage conditions. Undertaken as part of an engineering, stability, or clinical trial, such testing can help to prove that the product can be stored safely. This article outlines why glass delamination occurs and, more importantly, how pharma companies can use accelerated testing to pick the right containers for their drug products and avoid costly recalls. An Industry-Wide Problem In 2010, glass flakes were discovered in nine different drug products. These incidences of glass delamination, or glass attack, led to immediate recalls, in one case of 30 million vials.1 Since that time there have been continued recalls, with glass flakes discovered in other drugs from many different manufacturers. Glass delamination has suddenly emerged as a significant issue for pharmaceutical companies. While there have been no reports of patients injured as a result of any of these incidents, the industry and the FDA are rightfully taking the problem seriously. The problem with glass delamination is that it can take years to become visible, when a company is already fully committed with product on the shelves and in the hands of caregivers. It can easily cost millions of dollars to recall a drug due to glass delamination. Recalls not only affect product already in distribution but also disrupt the manufacture of new product, as the company must struggle to find replacement containers and rebuild inventory. Some companies have even had to cut the recommended shelf life of their drug products in half.2 Once delamination is discovered in a commercial drug product, it is already too late and there is nothing to do but recall the product. Pharma companies understandably want a way to screen potential containers for problems beforehand. Unfortunately, predicting potential problems is not a simple question, as there are multiple root causes for glass delamination. There is no one glass supplier, glass product, glass type, pH range, drug type, or drug formulation that is predictive of glass failure. Glass delamination is the result of a complex interplay of different variables, and a change in a single variable can make the difference between success and failure. This is why early testing is essential and why companies should undertake testing that pairs the individual drug products they are bringing to market against specific containers they are considering for storage and distribution. Below is an explanation for why glass delamination happens and, more importantly, how companies can use pre-testing to pick the right container and avoid costly product recalls due to glass flakes. Risk Factors for Glass Delamination In 2011, in the wake of the first of the recent recalls, the FDA sent the pharma industry a warning letter on glass delamination.3 While final regulations have not been published, the FDA is increasingly asking pharma companies to undertake a risk assessment and, when there is a moderate to severe risk, to provide detailed test results on the proposed packaging for a new drug. A number of risk factors have the potential to influence the delamination risk, including storage time and temperature, the chemistry of the drug product, the glass composition, the conditions of container manufacturing and the sterilization process. Despite its new-found visibility, glass delamination has been a long-standing problem in pharmaceutical industry. Our company, for example, first published research on this issue back in 1965, and it wasn’t a new problem even then. While drug formulations are certainly growing more complex — increasing the potential risk of chemical interaction between the drug product and the glass vial — drug formulation is only one of many factors involved in glass delamination. It should be kept in mind that risk factors alone (or the lack of risk factors) are not predictive of glass delamination, which is why testing is necessary. Every drug product is unique; just because one drug product had no problems with a particular type of container does not mean that a similar drug will be compatible with that same type of container. Why Delamination Happens To understand why glass delamination happens, we must first understand the primary root causes. Glass delamination is the result of a complex chemical reaction between the drug and the interior surface of the glass container, and the risk factors already mentioned influence the degree of this reaction. For injectable drug products, Type 1 glass (USP , EP 3.2.1, ASTM E438) is used. A glass is deemed to be Type 1 primarily by its hydrolytic resistance. Type 1 glasses are not chemically the same, as the compositional differences between glasses are significant, varying by as much as 10 weight percent (wt %) for single elements. The varying compositions result in significant differences in the physical properties of the glasses, primarily in melting/working temperature, as glasses that contain more silicon (Type 1A glasses) require more heat to shape the container. Molded vs. Tubular Containers Two different types of containers are used for injectable drug products: molded and tubular glass containers. Molded containers are formed in a single high heat cycle (the glass is melted, poured, and then blown or pressed into a mold). The glass in molded containers has a composition which is usually relatively low in silicon and high in alkali/alkaline earth elements, lowering the working temperature and resulting in interior container surfaces that are quite uniform in surface chemical homogeneity. Tubular containers are made from glass cane, requiring two high heat cycles. The tubing is made first, then it is segmented or “converted” in a second heating process into the final container design. Careful control of the converting process in the base/heel and shoulder/neck regions is crucial to ensuring that interior container surfaces maintain the resistance to chemical attack typical of the bulk glass. Poorly controlled converting will cause strong evaporation of some glass components (i.e. alkali borates) in the worked regions of the containers, changing the overall chemistry and lowering its resistance to glass attack. Glass cane compositions are typically Type 1A or Type 1B, having higher amounts of silicon and lower amounts of alkali/alkaline earth elements than molded containers. Additionally, treatments and coatings for containers are also commonly used. Ammonium sulfate treatment introduces a liquid spray of ammonium sulfate into the container after production but before annealing. This helps in the removal of alkali species from the vial surface in subsequent washing steps by an exchange reaction, but it does not confer additional stability to the glass surface. Quartz coated containers contain a thin layer of SiOx, which greatly reduces the diffusion of water into the glass surface, thus slowing down leaching of glass elements into stored drug product solutions. While both molded and tubular glass compositions used for parenteral packaging have high chemical durability, tubular glass compositions are regarded to have generally higher chemical resistance than molded glass compositions. Notwithstanding the two high heat cycles, proper control of the converting process results in tubular containers with the equivalent non-delamination of molded containers.4 The Mechanisms of Glass Attack The chemistry behind glass attack by water-based liquids is mainly driven by ion exchange and dissolution. The primary attack mechanism at acidic pH is the diffusion of water into the glass and exchange of hydrogen ions with the alkali (e.g. sodium, potassium) ions, which is called leaching. The primary attack mechanism at basic pH is the dissolution of the glass’ silicate backbone (i.e. silicon-oxygen bonds) by hydroxide ions. Armed with a basic understanding of glass chemistry, the next step is to understand how this chemistry drives the mechanisms of glass delamination. The problem occurs when a chemically complex drug product solution is put in contact with a chemically complex glass — the two start interacting with one another. If this interaction is dominated by pure dissolution, no glass delamination will appear, because the molecules of the glass surface are dissolving away from the topmost molecule down. Precipitates might be seen in the drug solution with strong dissolution under certain conditions (i.e. Si present at > 80 – 120 ppm), but these are not glass flakes typically found for delamination. The situation is changing when ion exchange and/or selective dissolution (e.g. of boron) are prevalent mechanisms. This creates a leached layer that can detach easily. Because the process exchanges a small atom for a large atom, this creates porosity in the glass. Think of a sponge made of glass — it is still the same overall shape, but it is laced with what might unscientifically be called holes. Unlike simple dissolution, in selective dissolution the process not only goes down into the glass but it can also work sideways across and underneath layers. A third mechanism involves dissolution and reaction, especially when the drug product buffer solution includes complex building substances like phosphates. Here, not only are the elements of the glass dissolving into the drug solution, but some of the elements from the drug products buffer solution interact with the glass. This again results in a cross-layer reaction, which might cause a layer to come off the glass surface. What flakes off is actually a hybrid particle that results from the interaction of the drug product and the glass surface. If glass delamination is a problem, companies must understand which of these mechanisms is at work before they can find a solution. This is where testing is necessary. Tests for Glass Delamination Over the past several years we have developed a delamination screening package aligned with the new USP guidance “Evaluation of the Inner Surface Durability of Glass Containers,” which will be published in final form July 1, 2013 and become official on December 1, 2013.5 The containers to be tested can be drawn from realtime stability samples or generated under accelerated aging temperatures to determine the amount of chemical attack from drug products on containers and assess the risk of glass delamination occurrence through the shelf-life of the drug product. We use a combination of the following methods for clients:
Enter your account email.
A verification code was sent to your email, Enter the 6-digit code sent to your mail.
Didn't get the code? Check your spam folder or resend code
Set a new password for signing in and accessing your data.
Your Password has been Updated !