Explore recent issues of Contract Pharma covering key industry trends.
Read the full digital version of our magazine online.
Stay informed! Subscribe to Contract Pharma for industry news and analysis.
Get the latest updates and breaking news from the pharmaceutical and biopharmaceutical industry.
Discover the newest partnerships and collaborations within the pharma sector.
Keep track of key executive moves and promotions in the pharma and biopharma industry.
Updates on the latest clinical trials and regulatory filings.
Stay informed with the latest financial reports and updates in the pharma industry.
Expert Q&A sessions addressing crucial topics in the pharmaceutical and biopharmaceutical world.
In-depth articles and features covering critical industry developments.
Access exclusive industry insights, interviews, and in-depth analysis.
Insights and analysis from industry experts on current pharma issues.
A one-on-one video interview between our editorial teams and industry leaders.
Listen to expert discussions and interviews in pharma and biopharma.
A detailed look at the leading US players in the global pharmaceutical and BioPharmaceutical industry.
Browse companies involved in pharmaceutical manufacturing and services.
Comprehensive company profiles featuring overviews, key statistics, services, and contact details.
A comprehensive glossary of terms used in the pharmaceutical and biopharmaceutical industry.
Watch in-depth videos featuring industry insights and developments.
Download in-depth eBooks covering various aspects of the pharma industry.
Access detailed whitepapers offering analysis on industry topics.
View and download brochures from companies in the pharmaceutical sector.
Explore content sponsored by industry leaders, providing valuable insights.
Stay updated with the latest press releases from pharma and biopharma companies.
Explore top companies showcasing innovative pharma solutions.
Meet the leaders driving innovation and collaboration.
Engage with sessions and panels on pharma’s key trends.
Hear from experts shaping the pharmaceutical industry.
Join online webinars discussing critical industry topics and trends.
A comprehensive calendar of key industry events around the globe.
Live coverage and updates from major pharma and biopharma shows.
Find advertising opportunities to reach your target audience with Contract Pharma.
Review the editorial standards and guidelines for content published on our site.
Understand how Contract Pharma handles your personal data.
View the terms and conditions for using the Contract Pharma website.
What are you searching for?
Patient safety depends on preventing particulate contamination in biopharmaceuticals.
June 3, 2014
By: Tara Sanderson
Formulation Services Manager, SGS
Biologics-based products are playing an increasingly important role in the healthcare professionals’ armory in the fight against disease, both in prevention and treatment. In this growing market, managing product contamination from intrinsic and extrinsic particles, and protecting patients from the associated risk, will become increasingly important. According to an IMS report in 2013, biologics will make up a fifth of the pharma market by 2017, and they currently represent about a third of the industry’s late stage pipeline. However, many biologics are less stable than small molecule drugs, and need to be stored and transported carefully and in controlled conditions to ensure a long shelf life. This can restrict their use, particularly in environments where the temperatures are high or fluctuating, or where products need to be transported over long distances, and it is difficult to maintain a consistent cold chain. One of the key challenges faced by companies developing and manufacturing biologics is the control of particles in the final formulation, whether these are extrinsic (extraneous particles introduced during manufacturing) or intrinsic (arising from the container closure, the formulation or the product itself). The Impact of Particles Particles in biologics can trigger immune responses in patients, with the effects ranging from just an inconvenience to a severe or even life-threatening reaction. Because of this potential impact on patients, the regulatory authorities require information on the levels of particles, and evidence of the limitation, control and identification of any product-related impurities. Particles can form during storage and transport, triggered by changes in temperature, or agitation and vibration. This limits the type of storage required for biologics, and shortens the potential shelf life of the product, which ideally needs to be two years or more. Both of these will have an impact on the biologic’s cost and profitability, and the size of its market, and therefore on the company’s ability to recoup its investment in R&D. Characterization: What Kind of Particles and Where Do They Come From? Particles exist everywhere, even in the cleanest of environments. Before looking at control, it is important to know the kinds of particles involved and where they have come from. The particles could be extrinsic contaminants introduced into the therapeutic during the manufacturing process and normal use, or intrinsic particles arising from the container closure, or aggregation of protein API that develop during the product’s life cycle (see Table 1). Protein aggregates generally occur as a result of even slight changes in the conformation of the therapeutic protein, caused by variation in the temperature, or interactions with the interface between the air and liquid, or the surfaces of the container. These conformational changes can trigger aggregation creating particles held together reversibly or irreversibly. Once the proteins have started to associate, these create a catalyst for further aggregation, leading to formation of even larger particles. Particle sizes, whether intrinsic or extrinsic, vary in size, from visible particles that are larger than 100 µm, down through sub-visible particles to oligomeric structures. Because of the range of sources, manufacturers need to screen the products for particles at every stage of manufacturing, both alone and in combination with any delivery systems or devices. It is also important to look at the particle levels and types within and between batches, especially if there are any changes in the process, however slight. The products will also need to be monitored over time to check whether the numbers or the types of particle are changing. The Next Step: Particle Control Once companies have found evidence of particle formation, the next step is to focus on particle control, in order to protect patients, improve product shelf life, and meet the needs of the regulators. If there are any changes in particle type or development during manufacturing or storage, the regulators will require evidence of further characterization, clearance and control. It is important to find the issues causing particle formation as early as possible during the development of the drug and its manufacturing process. This is because it is much easier to make changes at earlier stages of development, for example at the sequence, expression and purification or the formulation steps (Figure 1). Any significant formulation or process changes made at a later stage could be harder to control and have a larger impact on the cost of development and on the drug launch timeline, in turn delaying the time to market. As Figure 1 shows, there are a range of stages where control can be implemented, and the orange text highlights where the problems are likely to arise. The main route to particle control is through formulation. At the early product research phases, various aggregation prediction software are available that allow the product development scientists to identify sections of the primary sequence that could increase the risk of aggregation – as an example, any free thiols could increase the risk of covalent (irreversible) binding. Upfront early evaluation of the protein primary sequence can significantly reduce the propensity of the protein candidate to aggregate. In addition, during process development, there are stages that are required that can also impact the product and increase aggregation, e.g. pH reduction for virus inactivation and UF/DF filtration. All these processes that are required for effective purification can have significant effects on the integrity of the product and hence can trigger aggregation. Therefore, it is important to carefully monitor the levels of aggregation and subvisible particles levels during process development to ensure any problems are recognized early on so that can be controlled and effectively monitored through routine analysis. Formulation development is one of the most vital steps in creating an environment that stabilizes the conformation of the protein API. As part of early phase product development it is critical to implement preformulation screening as early as possible, this can even be implemented at the clone selection stage. Once the process has been locked down, and the product enters the clinic, it is still important to monitor the number and types of particles present, as events such as batch scale up and manufacturing site changes can affect the product produced. Therefore it is critical that subvisible particles continue to be monitored during characterization and comparability studies. Shipment of the product is also another stage in the process where aggregation levels can be significantly increased as a result of agitation and the potential for freeze/thaw, and analysis at this stage should include replication of shipping conditions, including fluctuations in temperature, pressure and movement. The filling stage also has potential to introduce extrinsic particles such as fragments of stoppers or vials. Because of this, the process needs to include a filtering step before and after filling to check the types and origins of any particles. If this does highlight any issues, then processes will have to be evaluated, or alternative packaging used, which could cause significant extra costs and delays. Once the product is packaged in its final form, ready for launch, in-use studies can then assess whether the route of administration is likely to introduce particulates, such as silicone oils or shards from delivery devices, with analyses both before and after administration. Finally, stability studies are essential to monitor particle levels and types of particles that may develop over time. Case Study: Controlling Particles through Formulation The case study described below discusses an IgG1 monoclonal antibody candidate that had successfully progressed through drug development, but was shown to exhibit significant aggregation when shipped and upon freeze/thaw. In order to control the levels of aggregation it was decided to reformulate, creating a product that would be more stable to shipment and storage at lower temperatures. Significant time and material constraints were encountered, making this a more challenging project and required incorporation of high throughput technologies to achieve. The characteristics of the original formulation:
Enter your account email.
A verification code was sent to your email, Enter the 6-digit code sent to your mail.
Didn't get the code? Check your spam folder or resend code
Set a new password for signing in and accessing your data.
Your Password has been Updated !