Explore recent issues of Contract Pharma covering key industry trends.
Read the full digital version of our magazine online.
Stay informed! Subscribe to Contract Pharma for industry news and analysis.
Get the latest updates and breaking news from the pharmaceutical and biopharmaceutical industry.
Discover the newest partnerships and collaborations within the pharma sector.
Keep track of key executive moves and promotions in the pharma and biopharma industry.
Updates on the latest clinical trials and regulatory filings.
Stay informed with the latest financial reports and updates in the pharma industry.
Expert Q&A sessions addressing crucial topics in the pharmaceutical and biopharmaceutical world.
In-depth articles and features covering critical industry developments.
Access exclusive industry insights, interviews, and in-depth analysis.
Insights and analysis from industry experts on current pharma issues.
A detailed look at the leading US players in the global pharmaceutical and BioPharmaceutical industry.
Browse companies involved in pharmaceutical manufacturing and services.
Comprehensive company profiles featuring overviews, key statistics, services, and contact details.
A comprehensive glossary of terms used in the pharmaceutical and biopharmaceutical industry.
Watch in-depth videos featuring industry insights and developments.
Listen to expert discussions and interviews in pharma and biopharma.
Download in-depth eBooks covering various aspects of the pharma industry.
Access detailed whitepapers offering analysis on industry topics.
View and download brochures from companies in the pharmaceutical sector.
Explore content sponsored by industry leaders, providing valuable insights.
Stay updated with the latest press releases from pharma and biopharma companies.
Explore top companies showcasing innovative pharma solutions.
Meet the leaders driving innovation and collaboration.
Engage with sessions and panels on pharma’s key trends.
Hear from experts shaping the pharmaceutical industry.
Join online webinars discussing critical industry topics and trends.
A comprehensive calendar of key industry events around the globe.
Live coverage and updates from major pharma and biopharma shows.
Find advertising opportunities to reach your target audience with Contract Pharma.
Review the editorial standards and guidelines for content published on our site.
Understand how Contract Pharma handles your personal data.
View the terms and conditions for using the Contract Pharma website.
What are you searching for?
Released By CCRM
October 30, 2019
Cellular immunotherapies (e.g. CAR-T cells) are primarily used as an autologous therapy to treat cancer. As such, these therapies are currently generated in small batches for each patient. To generate enough modified cells for a single treatment, cells are expanded in volumes from 1-10 L. In the final step of downstream processing (DSP) for immunotherapies, cells cultured in large volumes must be concentrated and reformulated into smaller volumes (e.g. 20-100 mL) suitable for delivery to patients. In this post, we will outline the key steps for concentration and reformulation and highlight specialized equipment needed for this critical unit operation. CCRM’s team has leveraged a partnership with GE Healthcare (GEHC) to create an innovative process based on modular and closed unit operations that can be staggered to produce multiple doses of an autologous therapy simultaneously. Steps for concentration and reformulation of immunotherapies: 1. Transfer from bioreactor: Traditionally the transfer of cells grown in suspension from one vessel to another would be accomplished by moving vessels such as bottles, tubes and flasks into and out of a biosafety cabinet (BSC), whereby fluid volumes are manipulated with pipettes. This process is open, manual, and not scalable. Instead, we have developed a fully process using wave-mixed bioreactors where cells are expanded in single-use bags (up to 10 L) that can be aseptically welded directly onto equipment for isolation, harvesting and final formulation of cells (e.g. Sefia Cell Processing System S-2000, kSep, LOVO, Rotea). 2. Volume reduction, washing and final formulation: Currently, immunotherapy workflows rely on bulk centrifugation including labour-intensive, open manipulations in a BSC. In our process, these steps are carried out by one piece of equipment that combines several steps, reduces labour costs, and has built-in automation capabilities. This device uses single-use consumables, accommodates sterile welds for seamless unit-op to unit-op transfer, and can process 1 L of cell suspension down to 40 mL in less than an hour. This represents an important advancement over traditional methods using a centrifuge because system closure and automation can significantly reduce the risk of operator error and contamination while increasing process robustness. Final product formulation most commonly involves the addition of a cryoprotectant to cells under a BSC (often in cryovials) as cryopreservation is a critical unit operation and is almost always required for immunotherapies that will be shipped to hospitals from centralized manufacturing facilities. Equipment such as the Sefia CPS S-2000 can add cryoprotectant to bags, control rate of cryoprotectant addition, temperature, and mixing to minimize potential damage to the cells. More information on the key steps above and methodologies compatible with industrial workflows for CAR-T manufacturing can be found here. For a discussion about how we can provide the right solutions for your needs, please contact us. Future process improvements for DSP of immunotherapies: As immunotherapies evolve, so will the processes that therapy developers use to produce them. For instance, as we move towards the use of allogeneic therapies manufactured in large bioreactors, we will need to build DSP equipment that can accommodate much larger volumes. While we have made significant strides in the development of closed and automated processes, there remain opportunities for further improvements. For example, a gap in the field is a method for rapid and high-throughput bag filling that would allow for the creation of master cells banks under completely closed conditions. Another key gap is the lack of a closed and automated system for removing air from cell cryopreservation bags prior to freezing. Air bubbles interfere with uniform and optimal cooling of cells, and currently are being removed manually in a biosafety cabinet by many developers, which opens the final product to contamination risk. An automated solution to overcome this challenge would save time and greatly reduce variability and risk. Ultimately, the process developed at CCRM, in partnership with GEHC, was informed by the needs of industry. Our team will continue to work with clients to understand their priorities, build custom solutions, and improve our existing processes.
Enter your account email.
A verification code was sent to your email, Enter the 6-digit code sent to your mail.
Didn't get the code? Check your spam folder or resend code
Set a new password for signing in and accessing your data.
Your Password has been Updated !